
11. A File Structure
for the Complex...

1965

133;

11. [Introduction]
A File Structure for
the Complex, the Changing,
and the Indeterminate
Ted Nelson coined the word “hypertext” and developed the concept that goes along with it, one that
underpins multimedia computing, electronic literature, and the World Wide Web. However, as the
contents of this essay reveal, Nelson’s vision was in some ways far different—his thinking much
more general, and his proposals significantly more advanced—than the Web’s model of hypertext.

The Web’s type of “chunk style” hypertext—static links that allow the user to jump from page to
page—has been around for decades and has been criticized for just as long. For Nelson, chunk style
hypertext is just one subtype of hypertext, a term he introduced to mean “a body of written or
pictorial material interconnected in such a complex way that it could not conveniently be presented
or represented on paper.” The “hyper” in Nelson’s neologism does not mean “link” but rather
“connotes extension and generality; cf. ‘hyperspace.’”

This essay, in addition to introducing the term hypertext, also proposes a specific type of
hypertext. Here Nelson’s model is of complex, reconfigurable, linked structures of information,
which can be manipulated at a granularity much smaller (or larger) than the page. In fact, Nelson’s
proposed form of hypertext may be almost unrecognizable to the user familiar only with the Web
(or chunk-style precursors such as Apple’s HyperCard).

While the power of today’s Web is unmistakable, its workings should not be mistaken for a
definition of hypertext. Rather than think of the Web as a hypertext system, we may do better to
think of it as a monumental public publishing space—one that attained critical mass by employing
a subset of hypertext concepts, primarily those of the chunk style. In the future the Web, and other
information technologies, may become yet more powerful by implementing other elements of
Nelson’s hypertext visions. For example, the specific type of hypertext that appears in this essay
(outlined 30 years before the launch of the Palm Pilot) would finally make personal information
managers useful platforms for thinking and working in a networked world, rather than souped-up
address books. And the potential for a Web-sized hypertext embodying more of Nelson’s concepts,
which he considers elsewhere in this volume (◊21, ◊30), is exciting enough that it stimulated
speculation for decades before the rise of the Web.
—NWF

A couple of years after this
paper was published, Nelson
ran into his old college
friend, Andries van Dam, at
the 1967 Spring Joint
Computer Conference. Van
Dam was by then a professor
at Brown University, and
after their meeting Nelson
began to travel up from New
York to Brown to work with
van Dam and others to
create one of the first
hypertext systems. Nelson
called it “Carmody’s system”
after the young programmer
whose name appeared first
on the alphabetically
credited writeup (see
“Further Reading” below). At
Brown the system was called
HES, for Hypertext Editing
System, and marked the
beginning of Brown’s
pioneering research program
(which also created the
FRESS and Intermedia
systems). The Carmody/HES
system also stands
symbolically at the juncture
of the space and information
ages. As van Dam noted in
his address to the Hypertext
’87 conference, the system
“was sold by IBM
(unbeknownst to me and Ted
and others who had worked
on it) to the Apollo mission
team at the Houston Manned
Spacecraft Center and used
to produce documentation
that went up with Apollo,
I’m proud to say.”

Further Reading

Carmody, Steven, Gross, Walter, Nelson, Theodor H., Rice, David, and van Dam, Andries, “A Hypertext
Editing System for the /360.” Pertinent Concepts in Computer Graphics. Ed. Michael Faiman and Jurg
Nievergelt, Urbana: University of Illinois Press, 1969.

Nelson, Ted. “Getting It out of Our System” Information Retrieval: A Critical Review, 191–210. Ed. George
Schecter, Washington, D.C.: Thompson Books, 1967.

Van Dam, Andries. “Hypertext ‘87 Keynote Address” Communications of the ACM 31(7):887-895. 1988.

Proceedings of the ACM Hypertext conferences. New York: ACM Press, 1987–present.

21

30

This paper contains not only
the first appearance of
“hypertext,” it also uses the
terms “hyperfilm” and
“hypermedia” for the first
time.

While some might place the rise of Human-Computer Interaction in the mid–1980s, Nelson was writing
about a central theme of HCI—the psychological needs of users—decades before this.

theNEWMEDIAREADER11. A File Structure
for the Complex...

134

Original Publication

Association for Computing Machinery: Proceedings of the 20th
National Conference, 84–100. Ed. Lewis Winner, 1965.

A File Structure for
the Complex, the
Changing and the
Indeterminate
Theodor H. Nelson

Summary
The kinds of file structures required if we are to use the
computer for personal files and as an adjunct to creativity
are wholly different in character from those customary in
business and scientific data processing. They need to provide
the capacity for intricate and idiosyncratic arrangements,
total modifiability, undecided alternatives, and thorough
internal documentation.

The original idea was to make a file for writers and
scientists, much like the personal side of Bush’s Memex, that
would do the things such people need with the richness they
would want. But there are so many possible specific
functions that the mind reels. These uses and considerations
become so complex that the only answer is a simple and
generalized building-block structure, user-oriented and
wholly general-purpose.

The resulting file structure is explained and examples of
its use are given. It bears generic similarities to list-
processing systems but is slower and bigger. It employs
zippered lists plus certain facilities for modification and
spin-off of variations. This is technically accomplished by
index manipulation and text patching, but to the user it acts
like a multifarious, polymorphic, many-dimensional, infinite
blackboard.

The ramifications of this approach extend well beyond its
original concerns, into such places as information retrieval
and library science, motion pictures and the programming
craft; for it is almost everywhere necessary to deal with deep
structural changes in the arrangements of ideas and things.

I want to explain how some ideas developed and what
they are. The original problem was to specify a computer
system for personal information retrieval and
documentation, able to do some rather complicated things in
clear and simple ways. The investigation gathered generality,
however, and has eventuated in a number of ideas. These are
an information structure, a file structure, and a file language,
each progressively more complicated. The information
structure I call zippered lists; the file structure is the ELF, or
Evolutionary List File; and the file language (proposed) is
called PRIDE.

In this paper I will explain the original problem. Then I
will explain why the problem is not simple, and why the
solution (a file structure) must yet be very simple. The file
structure suggested here is the Evolutionary List File, to be
built of zippered lists. A number of uses will be suggested for
such a file, in order to show the breadth of its potential
usefulness. Finally, I want to explain the philosophical
implications of this approach for information retrieval and
data structure in a changing world.

I began this work in 1960, with no help from anybody. Its
purpose was to create techniques for handling personal file
systems and manuscripts in progress. These two purposes
are closely related and not sharply distinct. Many writers
and research professionals have files or collections of notes
which are tied to manuscripts in progress. Indeed, often
personal files shade into manuscripts, and the assembly of
textual notes becomes the writing of text without a sharp
break.

I knew from my own experiment what can be done for
these purposes with card file, notebook, index tabs, edge-
punching, file folders, scissors and paste, graphic boards,
index-strip frames, Xerox machine and the roll-top desk. My
intent was not merely to computerize these tasks but to
think out (and eventually program) the dream file: the file
system that would have every feature a novelist or absent-
minded professor could want, holding everything he wanted
in just the complicated way he wanted it held, and handling
notes and manuscripts in as subtle and complex ways as he
wanted them handled.

Only a few obstacles impede our using computer-based
systems for these purposes. These have been high cost, little
sense of need, and uncertainty about system design.

The costs are now down considerably. A small computer
with mass memory and video-type display now costs

11. A File Structure
for the Complex...

1965

$37,000; amortized over time this would cost less than a
secretary, and several people could use it around the clock. A
larger installation servicing an editorial office or a newspaper
morgue, or a dozen scientists or scholars, could cost
proportionately less and give more time to each user.

The second obstacle, sense of need, is a matter of fashion.
Despite changing economies, it is fashionably believed that
computers are possessed only by huge organizations to be
used only for vast corporate tasks or intricate scientific
calculations. As long as people think that, machines will be
brutes and not friends, bureaucrats and not helpmeets. But
since (as I will indicate) computers could do the dirty work
of personal file and text handling, and do it with richness
and subtlety beyond anything we know, there ought to be a
sense of need. Unfortunately, there are no ascertainable
statistics on the amount of time we waste fussing among
papers and mislaying things. Surely half the time spent in
writing is spent physically rearranging words and paper and
trying to find things already written; if 95% of this time
could be saved, it would only take half as long to write
something.

The third obstacle, design, is the only substantive one, the
one to which this paper speaks.

Let me speak first of the automatic personal filing system.
This idea is by no means new. To go back only as far as 1945,
Vannevar Bush, in his famous article “As We May Think,”1

described a system of this type. Bush’s paper is better
remembered for its predictions in the field of information
retrieval, as he foresaw the spread and power of automatic
document handling and the many new indexing techniques it
would necessitate. But note his predictions for personal filing:

Consider a future device for individual use, which is a
sort of mechanized private file and library. It needs a
name, and, to coin one at random, “memex” will do. A
memex is a device in which an individual stores all his
books, records, and communications, and which is
mechanized so that it may be consulted with
exceeding speed and flexibility. It is an enlarged
intimate supplement to his memory.

It consists of a desk, and while it can
presumably be operated from a distance, it is
primarily the piece of furniture at which he
works. On the top are slanting translucent
screens, on which material can be projected for
convenient reading. There is a keyboard, and sets

of buttons and levers. Otherwise it looks like an
ordinary desk.

. . . .

A special button transfers him immediately to the
first page of the index. Any given book of his library
[and presumably other textual material, such as
notes] can thus be called up and consulted with far
greater facility than if it were taken from a shelf. As
he has several projection positions, he can leave one
item in position while he calls up another. He can add
marginal notes and comments, . . .” (1, 106–7)

Understanding that such a machine required new kinds of
filing arrangements, Bush stressed his file’s ability to store
related materials in associative trails, lists or chains of
documents joined together.

When the user is building a trail, he names it, inserts
the name in his code book, and taps it out on his
keyboard. Before him are the two items to be joined,
projected onto adjacent viewing positions. At the
bottom of each there are a number of blank code
spaces, and a pointer is set to indicate one of these on
each item. The user taps a single key, and the items
are permanently joined.

. . . .

Thereafter, at any time, when one of these items is in
view, the other can be instantly recalled merely by
tapping a button below the corresponding code space.
Moreover, when numerous items have been thus
joined together to form a trail, they can be reviewed
in turn, rapidly or slowly, by deflecting a lever like
that used for turning the pages of a book. It is exactly
as though the physical items had been gathered
together from widely separated sources and bound
together to form a new book. It is more than this, for
any item can be joined into numerous trails.

. . . .

Thus he goes, building a trail of many items.
Occasionally he inserts a comment of his own, either
linking it into the main trail or joining it by a side trail
to a particular item. (1, 107)

Two decades later, this machine is still unavailable.*
The hardware is ready. Standard computers can handle huge
bodies of written information, storing them on magnetic
recording media and displaying their contents on CRT
consoles, which far outshine desktop projectors. But no

135;

theNEWMEDIAREADER

programs, no file software are standing ready to do the
intricate filing job (keeping track of associative trails and
other structures) that the active scientist or thinker wants
and needs. While Wallace3 reports that the System
Development Corporation has found it worthwhile to give
its employees certain limited computer facilities for their
own filing systems, this is a bare beginning.

Let us consider the other desideratum, manuscript
handling. The remarks that follow are intended to apply to all
forms of writing, including fiction, philosophy, sermons,
news and technical writing.

The problems of writing are little understood, even by
writers. Systems analysis in this area is scanty; as elsewhere,
the best doers may not understand what they do. Although
there is considerable anecdote and lore about the different
physical manuscript and file techniques of different authors,
literary tradition demerits any concern with technical
systems as detracting from “creativity.” (Conversely, technical
people do not always appreciate the difficulty of organizing
text, since in technical writing much of the organization and
phraseology is given, or appears to be.) But in the computer
sciences we are profoundly aware of the importance of
systems details, and of the variety of consequences for both
quality and quantity of work that result from different
systems. Yet to design and evaluate systems for writing, we
need to know what the process of writing is.

There are three false or inadequate theories of how writing
is properly done. The first is that writing is a matter of
inspiration. While inspiration is useful, it is rarely enough in
itself. “Writing is 10% inspiration, 90% perspiration,” is a
common saying. But this leads us to the second false theory,
that “writing consists of applying the seat of the pants to the
seat of the chair.” Insofar as sitting facilitates work, this view
seems reasonable, but it also suggests that what is done
while sitting is a matter of comparative indifference;
probably not.

The third false theory is that all you really need is a good
outline, created on prior consideration, and that if the
outline is correctly followed the required text will be

produced. For most good writers this theory is quite wrong.
Rarely does the original outline predict well what headings
and sequence will create the effects desired: the balance of
emphasis, sequence of interrelating points, texture of insight,
rhythm, etc. We may better call the outlining process
inductive: certain interrelations appear to the author in the
material itself, some at the outset and some as he works. He
can only decide which to emphasize, which to use as unifying
ideas and principles, and which to slight or delete, by trying.
Outlines in general are spurious, made up after the fact by
examining the segmentation of a finished work. If a finished
work clearly follows an outline, that outline probably has
been hammered out of many inspirations, comparisons and
tests.**

Between the inspirations, then, and during the sitting, the
task of writing is one of rearrangement and reprocessing,
and the real outline develops slowly. The original crude or
fragmentary texts created at the outset generally undergo
many revision processes before they are finished.
Intellectually they are pondered, juxtaposed, compared,
adapted, transposed, and judged; mechanically they are
copied, overwritten with revision markings, rearranged and
copied again. This cycle may be repeated many times. The
whole grows by trial and error in the processes of
arrangement, comparison and retrenchment. By examining
and mentally noting many different versions, some whole
but most fragmentary, the intertwining and organizing of
the final written work gradually takes place.***

Certain things have been done in the area of computer
manuscript handling. IBM recently announced its
“Administrative Terminal System”5,6,7,8 which permits the
storage of unfinished sections of text in computer memory,
permits various modifications by the user, and types up the
final draft with page numbers, right justification and headers.

While this is a good thing, its function for manuscripts is
cosmetic rather than organizing. Such a system can be used
only with textual sections which are already well organized,
the visible part of the iceberg. The major and strenuous part
of such writing must already have been done.

11. A File Structure
for the Complex...

136

*The Bush Rapid Selector, which he designed2, is a powerful
microfilm instrument, but it is not suited to idiosyncratic
personal uses, nor to evolutionary modification, as described
hereunder.

**I understand that this account is reasonably correct for such
writers as Tolstoy, Winston Churchill and Katherine Anne Porter.
Those who can stick to a prior outline faithfully, like James
Fenimore Cooper, tend to be either hacks or prodigies, and
don’t need this system.

11. A File Structure
for the Complex...

1965

If a writer is really to be helped by an automated system, it
ought to do more than retype and transpose: it should stand
by him during the early periods of muddled confusion, when
his ideas are scraps, fragments, phrases, and contradictory
overall designs. And it must help him through to the final
draft with every feasible mechanical aid—making the
fragments easy to find, and making easier the tentative
sequencing and juxtaposing and comparing.

It was for these two purposes, taken together—personal
filing and manuscript assembly—that the following
specifications were drawn up.

Here were the preliminary specifications of the system: It
would provide an up-to-date index of its own contents
(supplanting the “code book” suggested by Bush). It would
accept large and growing bodies of text and commentary,
listed in such complex forms as the user might stipulate. No
hierarchical file relations were to be built in; the system
would hold any shape imposed on it. It would file texts in any
form and arrangement desired—combining, at will, the
functions of the card file, loose-leaf notebook, and so on. It
would file under an unlimited number of categories. It would
provide for filing in Bush trails. Besides the file entries
themselves, it would hold commentaries and explanations
connected with them. These annotations would help the
writer or scholar keep track of his previous ideas, reactions
and plans, often confusingly forgotten.

In addition to these static facilities, the system would have
various provisions for change. The user must be able to
change both the contents of his file and the way they are
arranged. Facilities would be available for the revising and
rewording of text. Moreover, changes in the arrangements of
the file’s component parts should be possible, including
changes in sequence, labelling, indexing and comments.

It was also intended that the system would allow index
manipulations which we may call dynamic outlining (or
dynamic indexing). Dynamic outlining uses the change in one
text sequence to guide an automatic change in another text
sequence. That is, changing an outline (or an index) changes
the sequence of the main text which is linked with it. This

would permit a writer to create new drafts with a relatively
small amount of effort, not counting rewordings.

However, because it is necessary to examine changes and
new arrangements before deciding to use or keep them, the
system must not commit the user to a new version until he is
ready. Indeed, the system would have to provide spin-off
facilities, allowing a draft of a work to be preserved while its
successor was created. Consequently the system must be able
to hold several—in fact, many—different versions of the
same sets of materials. Moreover, these alternate versions
would remain indexed to one another, so that however he
might have changed their sequences, the user could compare
their equivalent parts.

Three particular features, then, would be specially adapted
to useful change. The system would be able to sustain
changes in the bulk and block arrangements of its contents.
It would permit dynamic outlining. And it would permit the
spin-off of many different drafts, either successors or
variants, all to remain within the file for comparison or use
as long as needed. These features we may call evolutionary.

The last specification, of course, one that emerged from all
the others, was that it should not be complicated.

These were the original desiderata. It was not expected at
first that a system for this purpose would have wider scope
of application; these jobs seemed to be quite enough. As work
continued, however, the structure began to look more simple,
powerful and general, and a variety of new possible uses
appeared. It became apparent that the system might be
suited to many unplanned applications involving multiple
categories, text summaries or other parallel documents,
complex data structures requiring human attention, and files
whose relations would be in continuing change.

Note that in the discussion that follows we will pretend we
can simply see into the machine, and not worry for the
present about how we can actually see, understand and
manipulate these files. These are problems of housekeeping,
I/O and display, for which many solutions are possible.

Elements of the ELF
What was required we may call an evolutionary file structure: a
file structure that can be shaped into various forms, changed
from one arrangement to another in accordance with the
user’s changing need. It was apparent also that some type of
list structure was necessary. Making the file out of lists
would allow different categories of personal notes, separate

137;

***For a poignant, mordant portrayal of the writer’s struggle,
the reader is directed to Gorey’s The Unstrung Harp; or, Mr
Earbrass Writes a Novel.

theNEWMEDIAREADER11. A File Structure
for the Complex...

138

drafts, outlines and master indices all to be handled as lists of
some sort; their segments could then be manipulated
through automatic handling of index numbers. The resulting
file structure I will accordingly call the Evolutionary List File,
or ELF, since it is an evolutionary file structure constructed
with lists. The system proposed here is not the only ELF
possible. It is built upon a specific technique of attaching lists
together which has a natural resistance to becoming
confused and messy.

As computer-based systems grow in capability and
diversity of uses, they tend to become more and more
cluttered with niggling complications, hidden passageways,
and lurking, detailed interlocks, restrictions, specializations,
provisos. These should be forsworn, if possible, in the system
under discussion, so that it might be attractive to laymen
(including artists and writers) who feel unkindly disposed
toward computers. It should readily adapt to their own styles
of handling things, imposing few conventions or methods of
use. How could this imposition be avoided? And among so
many interesting and possible system functions and file
relations, how may the users know what connections to
make, how may they understand what they are doing, and
how may they avoid muddling and losing the things they are
working with?

The answer, I think you see, is to choose a very simple
structure that can be used and compounded in many
different ways. The basic arrangement chosen for these
purposes is an information structure I will refer to as zippered
lists. (We might call it permutation-invariant one-for-one
inter-list entry-linking, but that is not necessary.)

There are only three kinds of things in the zippered-list
ELF, with no predetermined relations among them—no
hierarchies, machine-based features or trick exceptions. The
system is user-oriented and open-faced, and its clear and
simple rules may be adapted to all purposes.

The ELF has three elements: entries, lists and links. An
entry is a discrete unit of information designated by the user.
It can be a piece of text (long or short), a string of symbols, a
picture or a control designation for physical objects or
operations.

A list is an ordered set of entries designated by the user. A
given entry may be in any number of lists.

A link is a connector, designated by the user, between two
particular entries which are in different lists (Figure 11.1).

An entry in one list may be linked to only one entry in
another list.

On the left we see two zippered lists. Between the entries
of list A and those of B are dashed lines, representing the
links between the two lists. On the right is the table of links
as it might look to a machine. The machine can read this
table from right to left or left to right, finding entries in B
that correspond to given entries in A, or vice versa. A change
in the sequence of either list, or additions to either list, will

not change the links that stand between them. Changes in
the link structure will occur only if the user specifically
changes the links, or if he destroys entries which are linked to
others.

To be technical, then, two lists are zippered if there are any
pairwise links between their respective elements, each
element is in no more than one link pair, and these links are
unaffected by permutation of the lists, remaining affixed to
the same pairs of elements. It is not required that the two
lists be of the same length, or, even if they are, that all entries
have a link to the other list.

The ELF’s File Operations
Zippered lists are an information structure; the Evolutionary
List File is a file structure. The ELF described in this paper
holds its contents exclusively as zippered (or unzippered)
lists. But the file structure must also include a set of
operations by which it may be modified. These file
operations exist for creating, adjusting or removing the

Figure 11.1. Zippered lists: 1-for-1 links between entries are
invariant under list permutation.

11. A File Structure
for the Complex...

1965

entry, list and link, and for manipulating the sequence
relation. An ELF is actually any machine which will, on
command, carry out the basic operations on entry, list, link
and sequence.
Entries The user may create new entries at any time,
putting anything in them that he thinks appropriate. Entries
may be combined or divided (unless indivisible, like objects,
commands, etc.). Entries may be put in any list, and the same
entry may be put in different lists. The user may direct that
entries of one list be automatically copied onto another list,
without affecting the original list.
Lists The user may create lists and assign entries to them.
He may at will make new copies of lists. He may rearrange
the sequence of a list, or copy the list and change the
sequence of that copy. Lists may be combined; lists may be
cut into sublists.
Links The user may create links between entries that are in
different lists. Any number of legal links may be created,
although the upper limit of links between any two lists is
determined by the 1-for-1 rule. When an entry or a list is
copied into a list, links will remain between parent and
daughter entries. Moreover, after a list-copying operation, the
daughter list will have the same links to all other lists as does
the parent list.
Sequences The user may put a list in any sequence he
wishes. (A copied list will maintain the original sequence
until modified.) Sequences may be transferred between lists
via the links: if the sequence of A is transferred to B, each
entry of A linked to an entry in B takes the sequential
position of its linked entry in B.

No definite meaning is assigned to these entities or
operations by the system; the user is free to let them mean
anything he likes. A list may be a category, trail, index,
dialogue, catalogue or poem, and lists may be assembled into
larger structures. The ELF may be thought of as a place; not a
machine, but a piece of stationery or office equipment with
many little locations which may be rearranged with regard to
one another.****

Note that zippered lists generate only one of various
possible Evolutionary List Files. Indeed, the description of
the file structure given here is in some ways restrictive: the

ELF could take a number of other, closely similar forms and
still be much the same thing. For example, it would be
possible to allow subentries and superentries into the file, to
behave and link up like normal entries, even though they
contained or were contained in other entries. But the
equivalent can be done with the current system. Another
possibility would be to allow links other than 1-for-1; these
could be modal, the different link-modes having different
meanings to the user. Or we might make it an evolutionary
network file, allowing any two entries to be connected. Or,
besides such general changes in the rules, plausible changes
and accessory functions for any purposes could be
introduced outside the given file structure, even including
modifications and widgets to do some of the same things
“more easily.”

But to the user such complication might render the system
far less handy or perspicuous. The ELF, with its associated
techniques as described above, is simple and unified. Many
tasks can be handled within the file structure. This means it
can be of particular benefit to people who want to learn
without complications and use it in ways they understand.
For psychological, rather than technical reasons, the system
should be lucid and simple. I believe that this ELF best meets
these requirements.

Technical Aspects
Since the ELF description above bears some resemblance to
the list languages, such as IPL, SLIP, etc., a distinction should
be drawn. These list languages9 are particularly suited to
processing data, fast and iteratively, whose elements are
manipulable in Newell-Shaw-Simon lists. Essentially they
may be thought of as organizations of memory which
facilitate sequential operations on unpredictably branching
or hierarchical data. These data may change far too quickly
for human intervention. Evolutionary file structures, and the
ELF in particular, are designed to be changed piecemeal by a
human individual. While it might be convenient to program
an ELF in one of these languages, the low speed at which
user file commands need to be executed makes such high-
powered implementation unnecessary; the main problem is
to keep track of the file’s arrangements, not to perform
computation on its contents. Although work has been done
to accommodate the list-language approach to larger chunks
of material than usual,10 the things people will want to put
into an ELF will typically be too big for core memory.

139;

****An ELF might even be constructed out of cards, blocks,
sticks and strings, using techniques of puppetry, but this
would not be a convenient object.

theNEWMEDIAREADER

The ELF does in fact share some of the problems of the list
languages: not available-storage accounting or garbage
collection (concerns associated with organization of fast
memory for processing, which may be avoided at slower
speeds), but the problems of checkout for disposal (what
other lists is an entry on?) and list naming. The former
problem is rather straightforwardly solved,11 p. 164; the latter
is complicated in ways we cannot go into here.

The ELF appears to be closest, topologically and in other
organizing features, to the Multilist system described by
Prywes and Gray.12 Like that system, it permits putting
entries in many different lists at once. However, in current
intent13 that system is firmly hierarchical, and thus
somewhat removed from the ELF’s scope of application.
Another closely related system is the Integrated Data Store of
Bachman14,15,16,17,18; this is intended as a hardware-software
system for disc I/O and storage arrangement, but in its
details it seems the ELF’s close relative. Each of these systems
has a connection logic that might be feasible as a basis for an
ELF different from this one. Or, either might prove a
convenient programming base for the implementation of
this file structure.

Another obvious technical question must be considered.
How can the ELF allow “unlimited” copies of entries and
lists? By patching techniques, of course. Variant entries and
lists can take virtually no space, being modification data
plus pointers to the original. When a modified version of a
list or entry is created, the machine patches the original
with the changes necessary to make the modified version.
(Figure 11.2).

Uses
In the discussion that follows, we will examine various
possible applications of zippered lists and the ELF, and
postpone discussing the file language they require. Finally we
will return to this problem, and describe the file language
PRIDE whose additional features are needed to adapt the
ELF for the uses originally discussed.

By assigning entries to lists, the ELF may be used as a
glorified card file, with separate lists used for categories,
trails, etc. This permits extensive cross-indexing by the
assignment of one entry to different lists. It permits subsets
and sub-sequences for any use to be held apart and examined
without disturbing the lists from which they have been
drawn, by copying them onto other, new lists. The ELF

permits the filing of historical trails or associative (Bush)
trails through documents, business correspondence, belles-
lettres, case law, treaties, scholarly fields and history, and the
mixture of trail with categorical filing.

These are the simple uses; the compound uses are much
more interesting. But since we cannot intuitively fit every
possible conceptual relationship into zippered lists,
imaginative use is necessary. Remember that there is no
correct way to use the system. Given its structure, the user
may figure out any method useful to him. A number of
different arrangements can be constructed in the ELF, using
only the basic elements of entry, list and link. Zippered lists
may be assembled into rectangular arrays, lattices and more
intricate configurations. These assemblies of lists may be
assigned meaning in combination by the user, and the system
will permit them to be stored, displayed, taken apart for
examination, and corrected, updated, or modified.

By using such combining arrangements on lists composed
of text, the file can be self-documenting, with all labelling
and documentation kept integrally within the file structure.
It is thus possible to incorporate, in a body of information
filed in the ELF, various levels of index, summary,
explanation and commentary. Many useful ways of listing
and linking such documentation are possible. In Figure 11.3
we see some of the ways that documentary lists may be
linked together. The lists shown are outline, suboutline,
draft, subdraft, summary, commentary and source list.
These are not all the possible types of documentary lists; for
example, “footnotes” are omitted. The ELF will permit any
number of these documentary lists; observe that they can be
built on one another, and indefinitely compounded. The
system will have no trouble accepting a commentary on a

11. A File Structure
for the Complex...

140

Figure 11.2. Spinoff of variants: extra versions need little space.

11. A File Structure
for the Complex...

1965

commentary on a subdraft of an outline for a variant list of
source materials.

Figure 11.3 shows also how two lists may contain some of
the same entries. The dashed line represents linkage between
entries, the solid line shows that both lists contain the same
entry. This may be useful for creating alternate versions, or,
as in this example, the lists containing the same entry may
have different purposes. Here, for instance, an entry in the
summary is also to be found in the main draft.

This self-documentation feature permits any string of text
in the ELF, long or short, to be annotated or footnoted for
scholarly or other purposes. Such marginalia can be
temporary or permanent, for the private memoranda of an
individual or for communication among different persons
using the file.

In a like manner, the ELF is capable of storing many texts
in parallel, if they are equivalent or linked in some way. For
example, instruction manuals for different models of the
same machine may be kept in the file as linked lists, and
referred to when machines are to be compared, used or fixed.
This is of special use to repairmen, project managers and
technical writers.

Moreover, the ELF’s cross-sequencing feature—the fact
that links ignore permutations—permits the collation of
very different cognate textual materials for comparison and
understanding. In law, this would help in comparing
statutes (or whole legal systems); in literature, variorum
editions and parodies. Thus such bodies as the Interpreter’s
Bible and a Total Shakespeare (incorporating Folios,
bowdlerizations, satires and all critical commentary) could
be assembled for study.

Let me try to illustrate the possible comprehensiveness
and versatility of this file structure as applied to texts. Figure
11.4 shows the different arrangements that might be used by
one man—in this case an historian writing a book—to
assemble and integrate his intellectual and professional
concerns. Although it is impossible to show the links
between all the separate entries of these lists—the entries
are not themselves discernible in this drawing—it is possible
to note the kinds of links between lists. A thin line between
lists shows that some links exist; a solid line indicates that
some entries of both lists are the same.

Perhaps this looks complicated. In fact, each of the
connectors shows an indexing of one body of information to
another; this user may query his file in any direction along

these links, and look up the parts of one list which are related
to parts of another. Therefore the lines mean knowledge and
order. Note that in such uses it is the man’s job to draw the
connections, not the machine’s. The machine is a repository
and not a judge.

The ELF may be an aid to the mind in creative tasks,
allowing the user to compare arrangements and alternatives
with some prior ideal. This is helpful in planning nonlinear
assemblages (museum exhibits, casting for a play,) or linear
constructions of any kind. Such linear constructions include
not only written texts; they can be any complicated
sequences of things, such as motion pictures (in the editing
stage) and computer programs.

Indeed, computer programming with an on-line display
and the ELF would have a number of advantages.
Instructions might be interleaved indefinitely without resort-
ing to tiny writing. Moreover, the programmer could keep up
work on several variant approaches and versions at the same
time, and easily document their overall features, their
relations to one another and their corresponding parts.
Adding a load-and-go compiler would create a self-
documenting programming scratchpad.

The natural shape of information, too, may call for the ELF.
For instance, sections of information often arrange
themselves naturally in a lattice structure, whose strands
need to be separately examined, pondered or tested. Such
lattices include PERT networks, programmed instruction
sequences, history books and genealogical records. (The ELF
can handle genealogical source documentation and its
original text as well.) Indeed, any informational networks

141;

Figure 11.3. All levels of documentation may be contained in the
ELF. (Heavy lines indicate that linked entries are identical.)

theNEWMEDIAREADER

that require storage, handling
and consideration will fit the
ELF; a feature that could have
applications in plant layout,
social psychology, contingency
planning, circuit design and
itineraries.

The ELF may, through its
mutability, its expansibility, and
its self-documentation features,
aid in the integration,
understanding and channeling
of ideas and problems that will
not yield to ordinary analysis or
customary reductions; for
instance, the contingencies of
planning, which are only
partially Boolean. Often the
reason for a so-called Grand
Strategy in a setting is that we
cannot keep track of the
interrelations of particular
contingencies. The ELF could
help us understand the interrelations of possibilities,
consequences, and strategic options. In a logically similar
case, evaluating espionage, it might help trace consistencies
and contradictions among reports from different spies.

The use of an ELF as the basis for a management
information system is not inconceivable. Its evolutionary
capability would provide a smooth transition from the
prior systems, phasing out old paperwork forms and
information channels piecemeal. Beginning with
conventional accounting arrays and information flow, and
moving through discrete evolutionary steps, the ELF might
help restructure an entire corporate system. Numerical
subroutining could permit the system to encompass all
bookkeeping. The addresses of all transaction papers,
zippered to lists of their dates and contents, would aid in
controlling shipments, inventory and cash. The ELF’s cross-
sequencing feature could be put to concrete uses, helping to
rearrange warehouses (and the company library) by
directing the printout of new labels to guide physical
rearrangement. Inventories, property numbers and patents
could be so catalogued and recatalogued in the ELF. Legal
documents, correspondence, company facts and history

could be indexed or filed in historical and category trails.
And upper management could add private annotations to
the public statements, reports and research of both the
organization and its competitors, with amendments,
qualifications, and inside dope.

PRIDE
While the ELF as described is expected to be general and
useful, the original purposes described at the beginning of
this paper call for certain further provisions. Now I would
like to describe a desirable file and information handling
language that will meet these needs, called the PRIDE
(Personalized Retrieval, Indexing, and Documentation
Evolutionary) System. Its purpose is to facilitate the use of
an ELF. The system described is not yet implemented, nor
even fully specified, but let us speak as though it is.

PRIDE includes the ELF operations. However, for safety
and convenience nearly every operation has an inverse. The
user must be permitted, given a list of what he has done
recently, to undo it. It follows that “destroy” instructions
must fail safe; if given accidentally, they are to be revocable.
For safety’s sake, it should take several steps to throw a thing

11. A File Structure
for the Complex...

142

Figure 11.4. ELF’s capacity for total filing: hypothetical use by historian. (A thin line indicates the
presence of links; a heavy line indicates that some linked entries are identical.)

11. A File Structure
for the Complex...

1965

away completely. An important option would permit the user
to retrace chronologically everything he does on the system.

Most of PRIDE’s applications will involve text handling,
either as a primary purpose or in the documentation of some
other task. Hence a number of features exist for convenient
text usage. Text handling commands (for modifying entries)
include the equivalents of standard proofreader’s marks for
insertion, deletion and switching of sections.

Also for text usage and user comfort, there are certain
system non-restrictions. There is no practical restriction on
the length of an input entry, and it need follow only the most
trivial format conventions. In addition, the machine will
interrupt any other PRIDE function to receive input text
(inspiration mode). It is necessary that entries of unspecified
length be acceptable to the system without fuss or warning.
PRIDE does not stipulate fixed record lengths, either for
input or storage; any such restrictions would have a
psychologically cramping effect. There is no reason the
system cannot appear to the user to have no fixed or
standard unit lengths; the machine’s operating units and
sections should not concern him.

Ideally, neither the length of entries, the number of lists, or
any other parameter of a file is restricted by anything but the
absolute size of all memory. This is a difficult requirement
for the programmer. Routinely, however, the system should
be able to accept entries thousands of characters long, accept
hundreds of entries to a list, and accept hundreds of lists in
the file. Otherwise, extraneous consideration by the user of
whether there’s room to add material or try out an offshoot
begins to interfere with the system’s use.

Although I have avoided discussing the means by which
the user sees his file, PRIDE must, of course, have functions
and commands for this purpose. For a CRT these include
quick lookup schemes,19 preferably with moving menus and
means of readily changing the hierarchy of lookup structure;
as well as visual cuing and mnemonic formats, including
cursor maneuvers, overlays and animated wipes and other
transitions. But such glamorous features do not reduce the
challenge or worth of working through a line printer, or
seeking to make the system useful under a batch-processing
monitor.

Many instructions aside from those already mentioned
will be needed by the user; particular applications will
require such operations as text lookup and integer
arithmetic. And surely all the uses of the system have not

been anticipated. Hence a subroutining facility is to be
available, reaching to assembly language or opening into the
machine’s other languages. This could be used for processing
the file’s contents (e.g., numbers or character strings), or for
creating more convenient combined operations out of the
different operations dealing with file structure, input-output
and text.

PRIDE is one possible way to make an ELF, or any
evolutionary file structure, useful. PRIDE would be a
foreground, free-standing language with the primary
mission of handling files and manuscripts, as discussed at
the beginning, and secondary applications in ordering and
documenting other kinds of complex information. Its major
use would presumably be in connection with time-shared
display and information systems. But such a language is
only one suggestion. Actually, there is not much reason that
the ELF could not be made a standard file structure for all
purposes; unused capabilities would not intrude, but would
still be there if unexpectedly wanted. ELF systems could be
built into the file capabilities of general utility software. The
actual computation involved is relatively trivial, and the ELF
could easily be incorporated into I/O routines or data
channel languages. Even small-scale hardware
implementations are not unthinkable; a control box
between a typewriter and a tape recorder, for instance.

All these applications depend, of course, on the system’s
being actually useful, which is an empirical question. A
number of possible applications have been mentioned. But,
except as a crutch to man’s fallible mind, is there any reason
to suppose that the system has any general applicability in
principle?

Philosophy
As “philosophy” I want to speak of two major things. First,
complex file structures (like the ELF) make possible the
creation of complex and significant new media, the hypertext
and hyperfilm. Second, evolutionary file structures (like the
ELF) make it possible to keep track of things that have been
changing, without our awareness, all along. These include the
major categories of human thought, which will go on
changing.

Systems of paper have grave limitations for either
organizing or presenting ideas. A book is never perfectly
suited to the reader; one reader is bored, another confused by
the same pages. No system of paper—book or programmed

143;

text—can adapt very far to the interests or needs of a
particular reader or student.

However, with the computer-driven display and mass
memory, it has become possible to create a new, readable
medium, for education and enjoyment, that will let the
reader find his level, suit his taste, and find the parts that
take on special meaning for him, as instruction or
entertainment.

Let me introduce the word “hypertext”***** to mean a body
of written or pictorial material interconnected in such a
complex way that it could not conveniently be presented or
represented on paper. It may contain summaries, or maps of
its contents and their interrelations; it may contain
annotations, additions and footnotes from scholars who have
examined it. Let me suggest that such an object and system,
properly designed and administered, could have great
potential for education, increasing the student’s range of
choices, his sense of freedom, his motivation, and his
intellectual grasp.****** Such a system could grow indefinitely,
gradually including more and more of the world’s written
knowledge. However, its internal file structure would have to
be built to accept growth, change and complex informational
arrangements. The ELF is such a file structure.

Films, sound recordings, and video recordings are also linear
strings, basically for mechanical reasons. But these, too, can
now be arranged as non-linear systems—for instance,
lattices—for editing purposes, or for display with different
emphasis. (This would naturally require computer control,
using the ELF or a related system, and various cartridge or re-
recording devices.) The hyperfilm—a browsable or vari-
sequenced movie—is only one of the possible hypermedia
that require our attention.

So much for what we can create afresh with this structure.
What about the things that have already been around awhile?

The physical universe is not all that decays. So do
abstractions and categories. Human ideas, science, scholarship
and language are constantly collapsing and unfolding. Any
field, and the corpus of all fields, is a bundle of relationships
subject to all kinds of twists, inversions, involutions and
rearrangement: these changes are frequent but unpredictable.

Recall that computers, once a branch of mathematics, are now
their own field (but the development of fluid logic indicates a
possible merger with the art of wind instruments). Social rela-
tions, psycholinguistics and psychonomics are new fields, even
though they rest on no special discoveries; political economy,
natural history and social ethics are gone. Within a given area,
too, the subheadings of importance are in constant flux. In
the social sciences, for instance, the topic headings of the
nineteen-thirties now sound quaint.

While the disappearance and up-ending of categories and
subjects may be erratic, it never stops; and the meaning of this
for information retrieval should be clear. Last week’s
categories, perhaps last night’s field, may be gone today. To the
extent that information retrieval is concerned with seeking
true or ideal or permanent codes and categories—and even the
most sophisticated “role indicator” syntaxes are a form of this
endeavor—to this extent, information retrieval seems to me
to be fundamentally mistaken. The categories are chimerical
(or temporal) and our categorization systems must evolve as
they do. Information systems must have built in the capacity
to accept the new categorization systems as they evolve from,
or outside, the framework of the old. Not just the new
material, but the capacity for new arrangements and
indefinite rearrangements of the old, must be possible. In this
light, the ELF, indefinitely revisible and unperturbed by
changes in overall structural relations, offers some promise.

There is, then, a general rationale. I believe that such a
system as the ELF actually ties in better than anything
previously used with the actual processes by which thought is
progressively organized, whether into stories or hypertext or
library categories. Thus it may help integrate, for human
understanding, bodies of material so diversely connected that
they could not be untangled by the unaided mind. For both
logistic and psychological reasons it should be an important
adjunct to imaginative, integrating and creative enterprises. It
is useful where relationships are unclear; where contingencies
and tasks are undefined and unpredictable; where the
structures or final outcome it must represent are not yet fully
known; where we do not know the file’s ultimate
arrangement; where we do not know what parts of the file are
most important; or where things are in permanent and
unpredictable flux. Perhaps this includes more places than we

*****The sense of “hyper-” used here connotes extension and
generality; cf. “hyperspace.” The criterion for this prefix is the
inability of these objects to be comprised sensibly into linear
media, like the text string, or even media of somewhat higher
complexity. The ELF is a hyperfile.

theNEWMEDIAREADER11. A File Structure
for the Complex...

144

******I will discuss this idea at length elsewhere.

11. A File Structure
for the Complex...

1965

think. And perhaps here, as in biology, the only ultimate struc-
ture is change itself.

Conclusion
This paper has proposed a different kind of structure for
handling information.

Essentially it is a file with certain storage provisions which,
combined, permit the file’s contents to be arranged any-
which-way, and in any number of ways at once. A set of
manipulation functions permits making changes or keeping
track of developments. The file is capable of maintaining
many different arrangements at the same time, many of
which may be dormant. This makes ordinary measures of effi-
ciency inappropriate; as with high fidelity music systems,
enrichment is derived from the lavish use of surplus capacity.

The key ideas of the system are the inter-linking of
different lists, regardless of sequence or additions; the re-
configurable character of a list complex into any humanly
conceivable forms; and the ability to make copies of a whole
list, or list complex—in proliferation, at will—to record its
sequence, contents or arrangement at a given moment. The
Evolutionary List File is a member of the class of evolutionary
file structures; and its particular advantages are thought to be
psychological, not technical. Despite this file’s adaptability to
complex purposes, it has the advantage of being conceptually
very simple. Its structure is complete, closed, and unified as a
concept. This is its psychological virtue. Its use can be easily
taught to people who do not understand computers. We can
use it to try out combinations that interest us, to make
alternatives clear in their details and relationships, to keep
track of developments as they occur, to sketch things we
know, like or currently require; and it will stand by for
modifications. It can be extended for all sorts of purposes, and
implemented or incorporated in any programming language.

There are probably various possible file structures that will
be useful in aiding creative thought. This one operates, as it
were, on lists that hook together sideways, and their copies.
There may be many more.

References

1. Bush, Vannevar, “As We May Think.” The Atlantic Monthly, 176:1
(July, 1945), 101–108.

2. Hirsch, Phil, “The Bush Rapid Selector.” Datamation, June 1965,
56–57.

3. Wallace, Everett R., “Experience with EDP Support of Individuals’
File Maintenance.” Parameters of Information Science: Proceedings of
the American Documentation Institute, v. I (American
Documentation Institute, 1964), 259–261.

4. Gorey, Edward, The Unstrung Harp; or, Mr Earbrass Writes a Novel.
Duell, Sloan and Pearce, N.Y., 1953.

5. International Business Machines Data Processing Division, “The
IBM Administrative Terminal System.” Company brochure 520–1146.

6. International Business Machines Technical Publications
Department, “1440–1460 Administrative Terminal System
Application Description.” IBM, White Plains, New York.

7. Timberlake, W.D., “Administrative Terminal System” (abstract.)
STWP Proceedings, May 1965, no page number. New York: Society of
Technical Writers and Publishers, 1965.

8. Farrell, Austin C., “Evolution of Automated Writing.” STWP
Proceedings, May 1965, no page numbers. New York: Society of
Technical Writers and Publishers, 1965.

9. Bobrow, Daniel G, and Bertram Raphael, “A Comparison of List-
Processing Languages.” Comm. ACM 7:4 (April, 1964), 231–240.

10. Comfort, W.T., “Multiword List Items.” Comm. ACM 7:6 (June,
1964), 357–362.

11. Weizenbaum, J., “Knotted List Structures.” Comm. ACM 5:3
(March, 1962), 161–165.

12. Prywes, N.S. and H.J. Gray, “The Multilist System for Real Time
Storage and Retrieval.” Proceedings of IFIP Conference, 1962,
112–116.

13. Prywes, N.S., “Interim Technical Report: The Organization of
Files for Command and Control.” Moore School of Engineering,
March, 1964.

14. Bachman, C.W. and S.B. Williams, “The Integrated Data Store—A
General Purpose Programming System for Random Access Memories.”
AFIPS Conference Proceedings, v. 26, 411–422. Spartan Books, 1964.

15. General Electric Computer Department, “I-D-S.” Company
brochure CPB-425.

16. General Electric Computer Department, “Introduction to
Integrated Data Store.” Company brochure CPB-1048, 1965.

17. Bachman, Charles W., “Software for Random Access Processing.”
Datamation, April 1965.

18. General Electric Computer Department, “Integrated Data Store:
New General Electric Technique for Organizing Business Data.”
Company publication, January 1965.

19. Corbin, Harold S., and George J. Stock, “On-Line Querying via a
Display Console.” Fourth National Symposium on Information Display:
Technical Session Proceedings, 127–154. Society for Information
Display, Washington, 1964.

145;

theNEWMEDIAREADER

146

